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THE USE OF QUADRATIC FORMS TO STUDY THE STABILITY WITH RESPECT 

TO PART OF THE VARIABLES* 

A.S. OZIRAWER 

The conditions for the existence of the Lyapunov function in the form of 
a quadratic form with constant coefficients, positive definite with 
respect to a part of the variables, necessary for the non-linear systems, 
and necessary and sufficient for linear stationary systems, are obtained. 
Examples are considered. 

1. Let us consider a system of differential equations of the perturbed motion /l/ 
XI' = x (t, z) (X (t, 0) E 0) (i.1) 
x = (n, . .., urn, %. . .* .p)T, m>O,~>O,fi=m+~ 

We assume that: a) the right-hand sides of system (1.1) are continuous in the region 

:ZO*IYI<H>O,nzII<+m (1.2) 
and satisfy the conditions of uniqueness of the solution r=z(t;b,m,), determined by the initial 
conditions z(&,;b,z*)= &,, b) the solutions of system (1.1) are z-continuable. 

Let us assume that the k(l(k<n) first integrals are known for system (1.1) 

Vi (t, I) = coast (Vi (t, 0) E 0), 1 = 1, . . .,k (1.3) 

Pozharitskii /2/ obtained the necessary and sufficient conditions for the existence of 
the positive definite function 

V (1, x) = F (V, (t, z), . . ., Vr (h +I) (1.4) 
formed from the integrals (1.3). The results can be extended to embrace the problem of 
stability with respect to part of the variables, namely: 

lo. The necessary and sufficient condition for any y--positive definite function (1.4) to 
exist is, that the function 

V, (t, X) = F0 (V, (t, I). . . ., Vk (t. X) = VI’@, X) + . . . + V#‘.(t, x) (1.5) 

be y-positive definite. 
2O. The function (1.5) is Y-positve definite if andonlyif for at least one of the 

integrals, say Vi&x), a pair of functions pi(r)= R and vi(r)= K exists such that Vf’ (6 x) > 

w(IuD as long as Vir+...+~_l+~+,+...+Vk~(~i(~y~ (the function (I(~)EK by definition 
/3/, provided that a(rj is continuous and increases monotonically, and a(O)=O). 

We note /2/ thatif such a pair of functions can be found for one integral, then it can be 
found for any other integral. 

In /4/, for thecaseof analytic, time-independent integrals (1.3),the conditions enabling 
these integrals to be used to construct a function whose expansion in a Maclaurin' series begins 
with a positive-definite quadratic form were obtained. The results obtained in /4/ cannot be 
extended to the problem of stability with respect to a part of the variables, since we cannot, 
generally speaking, use the Y-positive definiteness of the quadratic part of the Lyapunov 
function to draw any sort of conclusions concerning the sign definiteness (with respect to all 
or some of the variables) of the function itself. 

In the connection it is useful to establish the conditions (both necessary and sufficient) 
for the existence, in system (l.l), of the Lyapunov function as a quadratic form with constant 
coefficients. 

Here and henceforth the function V(t,x) will be called the Lyapunov function if /l, 5/ 
V(t,x)>a(UyD and V&x)<0 by virtue of system (1.1). 

2. Theorem 1. The quadratic form V(X) with constant coefficients will be y-positive 
definite if and only if a number a>0 exists for which U(X) can be written in the form 

v (x) = k (~1' + . . . + ha) + &I’ + . . . + &k? 1 i k < n (2.1) 

Et = QYI +. . . + WnUm + BiCh + a - - + Pip+ (1 = 19 *. -9 n; aij* Bij - (2.2) 
comt) 

Proof. The sufficiency of the condition is obvious. We shall show the necessity. Let 

"(X) >= (IYQ? =(r) E A. We write I= o(l)>O, then v(x)>b on the surface Yll=l. We put every 
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point r=(y,z)r with y#O in 1:l correspondence with the points X* = (y*,~*)~ according to 
the rule x=x*lyI:. Here clearly ly*[=l, therefore "(x*)&b. Since for the quadratic form 
we have ~(cx)=ef~(x)(c= con&), we obtain v(x) -u(~*IIy~=UyI~u(x*)>,~~yP from which it follows 
that u (x) -A (& + . . . +rm*)>O. A non-negative quadratic form appears on the left-hand side of 
this inequality. AS we know /6/, it can be reduced to the form (2.1) by means of the linear 
non-degenerate transformation (2.2). 

The proof implies that if the function u(x) can be written in the form (2.1), (2.2) for 
some b=A,>O, then it can be written in the same form for any h~(O,b) and the constants 

aij7 Bij and k are dependent on L. 

Theorem 2. If a quadratic form V(X) with constant coefficients exists, representing a 
Lyapunov function for the system (l.l), then the system has a q-dimensional (O(q( p), 
positively invariant, uniformly stable subspace situated in REP = (x: y = 0). 

The subspace will be given in explicit form below. 

Proof. According to Theorem 1 the function v(x) can be written in the form (2.1), (2.2). 
Let us consider the set M= (I: "(x)=0). According to (2.1), (2.2) we have 

M = (X: Y = 0. pi121 -I_. . * + BipXp = O(i = 1, a. .) k)} (2.3) 
We shall show that M satisfies the required conditions. 
Clearly, M is a subspace and its dimension is ~=~-rrankl~~~II(i=i, . . ..k. 7 =i,...,p).Mc 

sp'O<q<P. If -EM. then v&)=0; since v>,O, we have u(x(t;&,,x,J)~O for all t>,to and 
hence /7/, x(t;t,,%)Ehf for any t>to, i.e. M is positively invariant. It can be shown that 
the form (2.1), (2.2) is positive definite with respect to the distance P&M) from the set 
1. Since v is independent of t and v'<O by virtue of the system (l.l), it follows /8/ that 
the invariant set (2.3) is uniformly stable. The theorem is proved. 

Clearly, the uniform stability of the set (2.3) implies, at any q, O<q<p, the uniform 
y-stability of the motion x.= 0. If rank11 prl# = p, then q= 0, the set M contracts to the point 
x= 0 and V(X) is positive definite. In this case the motion x=0 is uniformly poeitive in 
all variables (in particular in y). If on the other hand p,,=O(rankIpil[= O), then q=p and 
the set M becomes the subspace R=P, in which case the quadratic form (2.1), (2.2) will depend 
only on Y and R,P will be uniformly stable /l, 9/. 

Note. The function 
v(x) = W(Y) + El'+. . . + Er’ (2.4) 

where m(Y), is a Y-positive definite quadratic form and the functions ii are defined in (2.2), 
can be reduced to a form analogous to (2.1). Indeed, the function (2.4) differs from (2.1) by 
the following additional term on the right-hand side: 

w (y) - h. (II’ + . . . -I- Ym') (2.5) 
For sufficiently small A.>0 the quadratic form (2.5) is y-positive definite, and can 

therefore be reduced to the sum of squares of forms linear in vi. It is clear that the sets 
(2.3) identical for the functions (2.1) and (2.4). 

Theorem 2 yields the necessary conditions for the existence of the Lyapunov function 

” (XL We find that for the linear system 

yi' = z aijyj+ 5 bi,zl (i=i,. . . ,m) 0.6) 
j-1 I=1 

‘** = zl ‘*jYj + li d#l”l (’ = ‘t ’ ’ ’ I P) 

these conditions are also sufficient (the stability of autonomous 
therefore in what follows we shall omit, for brevity, any mention 

with constant coefficients 
systems is always uniform; 
of uniformity). 

Theorem 3. If the zero solution of system (2.6) is y-stable, a quadratic form exists 
with constant coefficients which is the Lyapunov function for this system. 

Proof. If all bir=O, then the theorem is obvious. Let us assume that a bir#O exists. 
Then, as was shown in /lo/, we can use new variables 

where pit is expressed in terms of the coefficients of system (2.6), and transform to the p- 
form 

~~.=~~a~~y~+i;~++ (i=i,...,m) 
j=l I=1 

m 

w3) 
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and the zero solution of system (2.6) will be y-stable if and only if the zero solution of 

system (2.8) is stable in all variables y, c. The stability of the zero solution of system 
(2.8) implies [h-n] the existence of a positive-definite quadratic form r~(y,p) such, that 

%.R) 6 0. By virtue of the properties of the function w, thereexists I>0 such that w(y, 

c)>~(UYI~+IPU?>,~!YIP. Therefore, replacing the arguments pi in the function w(y,p) accord- 
ing to (2.7), we obtain y-positive definite quadratic form v(y,z), and u;~,~,<O. The theorem 
is proved. 

Corollary 1. If the zero solution of the system (2.6) is y-stable, then the system has 
a q-dimensional (0<~Qp) positively invariant stable subspace MCRsP. 

The corollary follows from Theorem 2 and 3. We note thatM= ((y, P): w (Y, c)= 0), therefore 
M = (x: y = 0. @ilZl+ . . . f~ipzp = 0 (i = 1, . .., r)), where pil is the coefficient given by (2.7) and 
*=A-K 

Corollary 2. The following assertions are equivalent for system (2.6): 
lo. The zero solution is y-stable. 
2O. Every solution is y-bounded. 
3O. The zero solution of the system in p-form corresponding to the system (2.6) is 

stable. 
do. There exists a q-dimensional (u<q<p) positively invariant stable subspace A4CR.p. 

5O. There exists a Lyapunov function in the form of a quadratic form with constant 
coefficients. 

The equivalence 1°HZ20 was proved in /14/ and i"@3' in /lo/. The relations 1'04 and 
i0 ++ 5" are obtained from Theorems 2 and 3 and Corollary 1. 

If the conditions of Theorem 2 hold, then according to /15/ the set (2.3), positively 
invariant by virtue of system (l.l), is uniformly stable under constant perturbations integrally 
small in the neighbourhood of this set. If in addition I&) is negative definite in p(x, M), 

then the set (2.3) is uniformly stable under the constantly acting perturbations small in the 
mean or small at every instant of time near this set. We also note that if a y-positive 
quadratic form v(x) exists such that v&) is negative definite in p*(x, M), then /12, 16/ the 

set (2.3) is positively invariant and exponentially asymptotically stable in the linear approxi- 
mation for any system 

y;= fijaijuj+ ~bilzt+Yi(t,y,~) @=I,. . . ,a,) 
j=l I=1 

in which iY(t, y,r) Il+llZ(t, y,z)i<Ap(x, Y) with sufficiently small constant A > 0. 

3. Example 1. /5, 17/. A heavy rigid body with one fixed point, in the Lagrange's case, 
admits of an infinite set of permanent rotations. The equations of perturbed motion have the 
following first integrals (in the notation of /5/): 

V, = A (&I* + El'+ 2& + %&,i + C (&'+ %&) + Sp%'b! 
V, = A (PO~I+~I + mr+ BE,+ &I% + &d + C(r,% + 6s + &a%) 

v*=q'I+qr*+cls'+2(,=ll+ fmr+md, v4=Es 

The function /5/ V= V,-20v,+ AoT,+ CpV,l is reduced to the form 

V = C (i + P) &* - 2CeEtrl, + AePllr*+A (t - erll)' + A (&a - en&* (3.1) 
There exists c>O such that the quadratic form C(l+ ~)&~~-2Ce&,n,+ A&Q is positive 

definite. Therefore the function (3.1) is positive definite in E,,ns and given in a form 
analogoustothat of (2.4). Using Theorem 2 and the note made in Sect.2, we conclude that the 
equations of perturbed motion have an invariant stable set 

El = rlr = 0, t - 011 = 0, E* - e'lr = 0 (3.2) 

lying in the SUbSpaCe &-q,= 0. From this follows, in particular, the stability of the 
unperturbed motion with respect to El9 clr /5/. We note that the invariant set (3.2) corresponds 
to the subset of the set of permanent rotations. 

Example 2 PI. The motion of mechanical holonomic system with normal coordinates z,, . . ..I.,, 

acted upon by dissipative gyroscopic forces and radial correction forcesis described, without 
the non-linear terms, by the system of equations 

Zi” = - 
6iTi+$lb*Js~+~CiJ*j (i=i,... 

j=l j=l 

I n; qj = - gj*; cij=-eji) 

Let us write rij=agij(a>O) and consider the function /18/ 
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1 n 
v=- 

c 

1 n n 

2 q*';t 2 a c bp,'+ a c* vi (3.4) 
-1 id i-1 

Its time derivative is, by virtue of system (3.3) 

F - ;.iltbi - 4 St”* 

Let /18/ b,= . . . =b,= a, b,+l>a, . . . . b,>a. In this case V'aO and the function (3.4) 

will become 

The quadratic form appearing within the braces is positive definite in x.,+~....,x~,z~+~, 
*, ., I,. . Taking into account the note from Sect.2 and using Theorem 2, we conclude that system 

(3.3) has a positively invariant stable set 

si = yi' = 0, Xj' + USj = 0 (i = m + 1, . . .) n; f = iv . . ., m) 

(this remains valid in the case when gij = gij(x), 4j = a&j). 
This implies, in particular, the stability of the unperturbed motion in I,,,+~,...,x,,,x~+~, 

. . *1 =*I ’ /18/. It can be shown that the stability with respect to &+, , . . ..z.,’ is in this case 
asymptotic. 

Example 3 /lo/. Let us consider a linear, stationary, third-order system 

II' = --y + z1 - 2+, r,' = 4y + PI, ZI' = 2y + 5, -z* (3.5) 
and v-positive definite quadratic form v= 1*+(%-22a#. Its derivative will be, byvirtueof 
system (3.5) U' = -v4 - (y - 4 + Zz,)* - (al - 21,)*. 

Using Theorem 2, we conclude that system (3.5) has a positively invariant stable set 

((WV 111 I*): p = 0, s, - 2% = 0) (3.6) 

Remembering that U-C-u , we can show that the set (3.6) is exponentially asymptotically 
stable. This in particular implies the exponentially asymptotic g-stability of the zero 
solution of system (3.5) /lo/. 
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The authox thanks V.V. Rumyantsev for his interest. 
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